### LUT University

# LAND OFTEE CURIOUS





27.9. BIOENERGIAPÄIVÄT, HELSINKI

### **BIOGENIC CO<sub>2</sub>** AS PART OF FINLAND'S STRATEGY

Hannu Karjunen

Post-doctoral researcher, LUT University



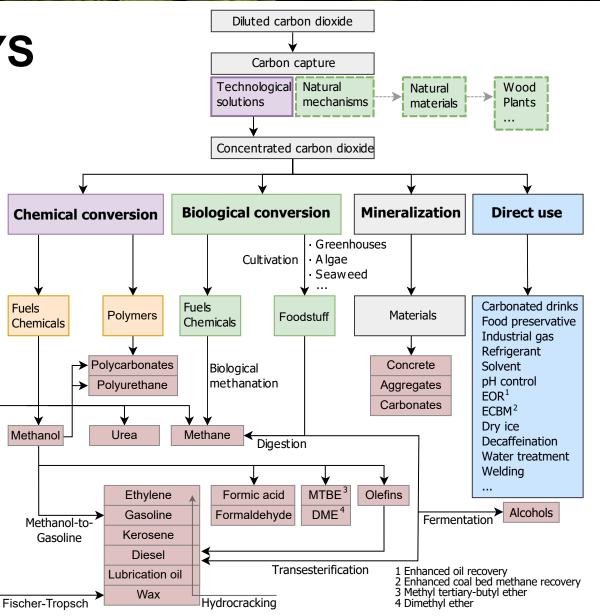
### FINLAND'S STRATEGIC GOALS?



LUT University

#### >> Climate act

- >> Achieve emission neutrality by 2035
- >> Achieve specified emission reductions by 2030, 2040 and 2050


#### >> Carbon neutral Finland 2035 – national climate and energy strategy

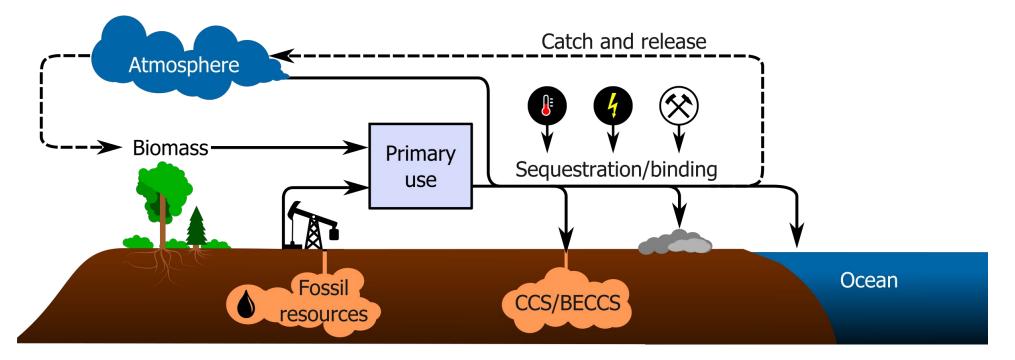
- Increasing international climate benefits, also referred to as the carbon handprint, should therefore be set as a goal of Finland's climate policy in addition to reducing national emissions."
- Security of supply in energy production as well as a competitive energy price essential for energy users and economic growth"
- System integration and electrification, hydrogen and electrofuels, future heating system, offshore wind power and emerging nuclear energy"
- >> "Approaches for supporting technical solutions for the development of sinks will be investigated"

### **CO<sub>2</sub> UTILIZATION PATHWAYS**

>> Focus on technical pathways in this speech

- Start with a gaseous stream of diluted CO<sub>2</sub>
- Bulk utilization volumes available for chemical conversion and mineralization




https://urn.fi/URN:ISBN:978-952-335-873-7

### **CLIMATE IMPACT OF CO<sub>2</sub> UTILIZATION**



LUT University

- >> Energy and material consumption critically affects environmental impact
- >> Few CO<sub>2</sub> products provide long-term binding potential
  - Can still be beneficial by replacing fossil feedstocks
  - Biogenic CO<sub>2</sub> has a special opportunity



### **GLOBAL EXISTING USE OF CO<sub>2</sub>**

| Existing use                                 | Current<br>CO <sub>2</sub> demand<br>(Mt/a) | FuturepotentialCO2demand(Mt/a) |
|----------------------------------------------|---------------------------------------------|--------------------------------|
| Urea manufacturing                           | 100–130 †                                   | 30-300                         |
| Enhanced oil recovery                        | 70–80 †                                     | 30-300                         |
| Beverage carbonation                         | 8*                                          | 14*                            |
| Food processing, preservation, and packaging | 8.5*                                        | 15*                            |
| Metal fabrication**                          | 5 * †                                       | 5-30 †                         |
| Other gas and oil applications               | 1–5                                         | 1–5                            |
| Water treatment                              | 1–5                                         | 1–5                            |
| Coffee decaffeination                        | n.a.                                        | 1 - 5                          |
| Wine making                                  | <1                                          | <1                             |
| Horticulture                                 | <1                                          | 1–5                            |
| Pharmaceutical processes                     | <1                                          | <1                             |
| Pulp and paper processing                    | <1                                          | <1                             |
| Supercritical $CO_2$ as a solvent            | <1                                          | <1                             |
| Electronics                                  | <1                                          | <1                             |
| Refrigerant gas                              | <1                                          | <1                             |



Currently, CO<sub>2</sub> is used mostly for urea production and enhanced oil recovery

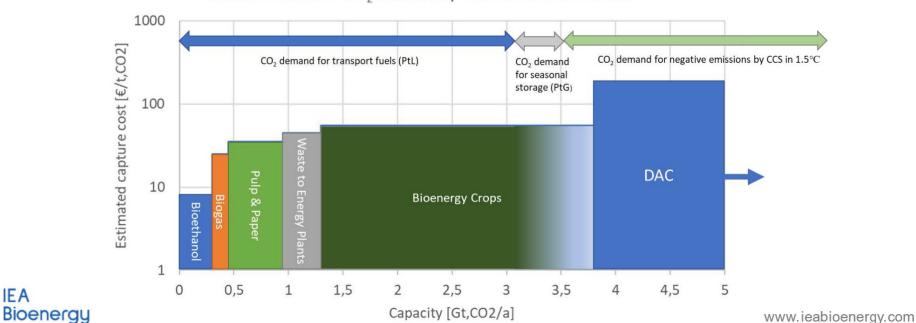
### **EMERGING USE OF CO<sub>2</sub>**

#### Emerging and possible use

| Algae cultivation                             | >300   |
|-----------------------------------------------|--------|
| Enhanced coal bed methane recovery            | 30-300 |
| Enhanced geothermal systems                   | 5-30   |
| Polymer processing                            | 5-30   |
| Chemical synthesis (excl. fuels and polymers) | 1–5    |
| Power cycle working fluid                     | <1     |
| Mineralization                                |        |
| Calcium carbonate and magnesium carbonate     | >300   |
| CO <sub>2</sub> concrete curing               | >300 ° |
| Bauxite residue treatment                     | 5-30   |
| Baking soda                                   | <1     |
| Fuels and chemicals                           |        |
| Renewable methanol and ethanol                | >300   |
| Formic acid (as hydrogen carrier)             | >300   |
| Formic acid (as chemical)                     | 1–5    |
| Fuel production using micro-organisms         | >300   |
| Ethylene                                      | >300 ‡ |
| Methane                                       | >300 § |
| Fischer-Tropsch fuels                         | >300 § |
|                                               |        |

| (0)           |
|---------------|
| <b>BioCCU</b> |

| Fuels and chemicals & mineralization |
|--------------------------------------|
| are conceived to be dominant uses    |


- Demand projections range from 1 Gt to about 9 Gt
  - Today, about 0.2 Gt

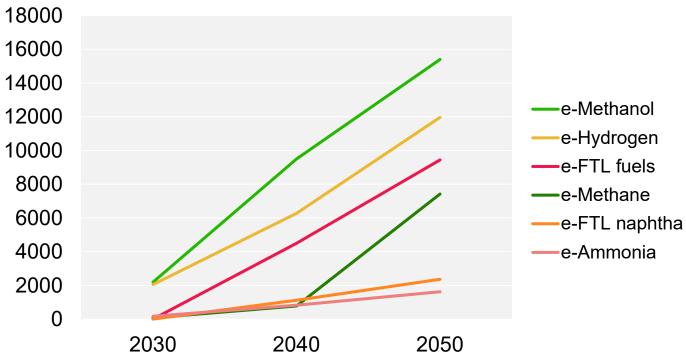
### WILL THERE BE A DEFICIT OF CO<sub>2</sub>?



LUT University

>> Existing facilities (bioethanol, biogas, pulp&paper, waste) could provide perhaps 1.5 – 2.1 Gt/a
>> DAC required after 2030? In multiple Gt scale?




Global renewable CO<sub>2</sub> availability from different sources

https://doi.org/10.1016/j.jclepro.2022.133920

Olsson, Tynjälä, Bang, Thrän. Deployment of BECCS/U – technologies, supply chain setup & policy options, IEA Bioenergy Task 40 webinar, 16 June 2020:

https://www.ieabioenergy.com/wp-content/uploads/2020/06/BECCUS-Webinar-Slide-OO20200616-final.pdf

#### HYDROGEN PRODUCTS IN ENERGY TRANSITION ONE VIEWPOINT FROM SCIENTIFIC LITERATURE



| Product       | CO <sub>2</sub> demand<br>(Gt) |
|---------------|--------------------------------|
| e-Methanol    | 4.1                            |
| e-FTL fuels   | 2.9                            |
| e-Methane     | 1.5                            |
| e-FTL naphtha | 0.7                            |
| Total         | 9.1                            |

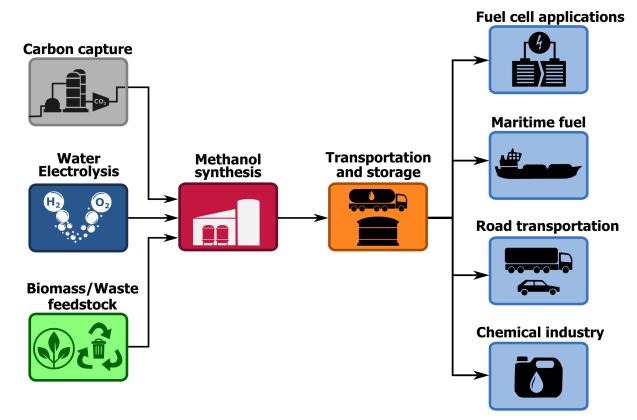
LUT University

CO.

**BioCCU** 

#### $H_2$ -based products demand (TWh<sub>H2</sub>)

The role of electricity-based hydrogen in the emerging power-to-X economy: <u>https://doi.org/10.1016/j.ijhydene.2023.08.170</u>

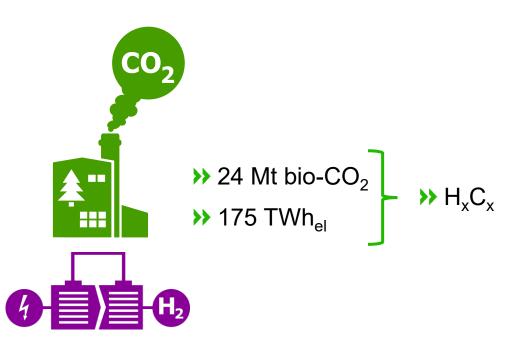

# BioCCU

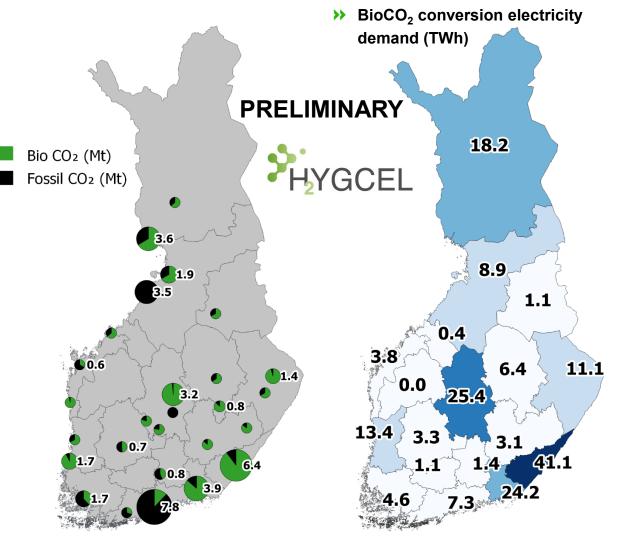
#### >> H<sub>2</sub> Shipping is costly

- -250 °C
- Rotterdam-Australia route
  - Liquid H<sub>2</sub> \$2.09/kgH2
  - Ammonia \$0.56/kgH2
  - Methanol \$0.68/kgH2
- H2 pipe transport could be viable over medium distances

**TRANSPORTATION OF HYDROGEN VS ITS DERIVATIVES** 

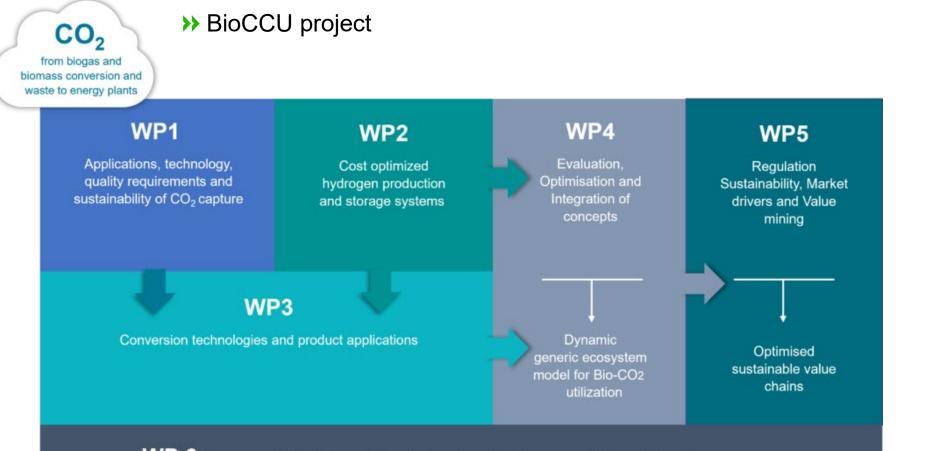
- 0.11-0.21 €/kgH2 @ 1000 km
- The transportation of methanol and other derivatives can be more economical than transporting pure hydrogen
- If hydrogen needs to be converted in any case, why not do closer to the source




### LARGE POINT SOURCES OF CO<sub>2</sub> IN FINLAND




- Large point sources in Finland could provide around 24 Mt/a
- >> Primarily form pulp mills
- >> Regional mismatch: renewable power vs CO<sub>2</sub>





Contains data from the National Land Survey of Finland topographic database 01/23

### **ONGOING ACTIVITIES**



WP 6 Common activities in knowledge sharing, dissemination, and exploitation of results

BioCCU

LUT University

### CONCLUSION

 $\rightarrow$  Globally, biogenic CO<sub>2</sub> will be a valuable and sought-after commodity in the long run

- Projected demand exceeds availability
- Regulation is key for ensuring deployment
- Utilization in short-lived products more feasible than with fossil resources
- >> Methanol and other hydrogen-based derivatives may be easier to transport will hydrogen infrastructure plans be realized?
- >> Infrastructure development will take time is there time to develop it?
- >> Ongoing research for P2X hubs & biogenic CO<sub>2</sub> value chains





## LUT University