/Energy transition of air traffic -Lentoliikenteen energiasiirtymä

Bioenergiapäivä 27.9.2023

Kati Sandberg, R&D Fellow Aviation Fuels, Neste Corporation

Why is the energy transition needed in aviation sector?

To mitigate climate change

The world needs a rapid transformation to limit global warming to 1.5° C. This translates to halving global GHG emissions by 2030 and redefining our economy to meet net zero by 2050.

To decarbonize aviation Aviation accounts for 2-3 % of global GHG / CO, emissions.

The role of sustainable aviation fuels (SAF)

Aviation needs growing volumes of sustainable aviation fuels to cut emissions

To reach net-zero in 2050, the needed SAF contribution to emissions reduction is around 65 %

- Technology (incl. Electric and hybrid aircraft)
- Operations and infrastructure

Sustainable aviation fuel

Offsets (or other carbon mitigation measures)

Aviation continues to rely heavily on liquid jet fuel, even with efficiency improvements and emergence of (short-haul) electric planes in the future.

Sustainable Aviation Fuels will be the most important tool in the aviation sector's transition towards net zero.

The technical development of Sustainable Aviation Fuels

Unlocking new raw material pools with innovation to accelerate emission reductions in transportation

Long-term fuel potential (Mtoe)

Renewable raw materials hold significant potential to accelerate the reduction of CO_2 emissions, in particular in the transportation sector.

Regulators hold the key to enable a broad renewable raw material pool to unlock the full emission reduction potential in transport and beyond.

Source: Neste analysis based on WEF Clean Skies for Tomorrow and other sources. Biomass potential converted to fuel potential, using around 85% conversion efficiency (weight-based) for fats and oils and novel vegetable oils; around 25% efficiency for lignocellulosic biomass and municipal solid waste.

*80% organic waste, with 20% non-reusable, non-separable plastic waste

Global raw material potential for renewable fuels (Mtoe)

There are currently seven ASTM approved pathways to produce synthetic blending components from alternative sources

ASTM D7566 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

Source: ASTM, CAAFI

SPK = synthesized paraffinic kerosene

Other ASTM International developments for SAF and synthetic fuels

- Co-processing is currently allowed at low percentages for SAF production in conventional refineries
- Standardization and developments already on-going by ASTM International task forces also to enable 100 % synthetic fuel / SAF use in future
 - 100% Drop-in synthetic fuel / SAF
 - 100% Non-drop-in synthetic fuel / SAF
 - Several test flights and programs have been done for both of these options by the industry stakeholders for technical demonstration and research purposes. Examples:
 - ECLIF3 project; Airbus, Rolls Royce, DLR, Neste
 - 100 % SAF flight with regional aircraft; Braathens regional airlines, ATR, P&WC, Neste

eSAF is Sustainable Aviation Fuel which is made of renewable electricity and carbon dioxide

sources

Renewable electricity and carbon capture

- Wind, solar, geothermal and hydropower as sources of renewable electricity. EU has strict electricity sourcing rules
- CO₂ is captured from biogenic point sources.
 Fossil CO₂ is not allowed in EU after 2041.

Power-to-liquid

- Electrolyser breaks water into hydrogen (H2) and oxygen using electricity
- Option 1: H2 and CO2 are synthesized into eCrude and upgraded to eSAF (Fischer Tropsch process)
- Option 2: H2 and CO2 are synthetized into methanol. Methanol-to-Jet-process is used to produce eSAF

e-SAF

- Synthetic aviation fuel produced using renewable energy
- FT technology and FT-based synthetic jet fuel are already approved in ASTM standards
- Methanol-to-Jet process is still under development and is not yet approved in ASTM standards

Commercial realities today

- High cost \Rightarrow high price
- No commercial scale eSAF production units yet
- ⇒ needs green hydrogen ecosystems ramp-up

⇒ needs significant investments for scaling

⇒ mandates are needed to
create demand and growth
with current price structure **DESTE**

New aircraft and propulsion technologies in future -Hydrogen and electric

Source: IATA Net zero 2050: new aircraft technology

Historical reflections

Every new aircraft generation has reduced emissions 15-20% (due to engines, aerodynamics, reduced weight)

Electric energy stored in batteries or fuel cells

New technologies

New aircraft and propulsion technologies for future under development

Hydrogen

can replace jet fuel in conventional engines and can also be used in fuel cells for electrical power

design

Timeline

Viability potential from mid 2030s onwards => incl. hybrid-electric, fully electric, hydrogen technologies

New aerodynamic

canard wing, blended wing,

strut or truss-braced wing

Hybrid-electric

Combining the advantages of both combustion and electric engines

Additional info:

IATA <u>Aircraft Technology Net</u> Zero Roadmap

The regulatory framework needed for SAF deployment and scale-up

DEST

SAF mandates and other policy frameworks are being established across the globe

Americas

- Market growth in the US driven by a mix of federal and state level incentives (opt-ins and tax credits)
- British Columbia plans to implement an aviation specific emission reduction target
- First LatAm SAF mandate expected for Brazil

EMEA

Asia Pacific

- SAF mandates in place (NOR, SWE, FRA) to be superseded by an EU-wide SAF mandate in 2025
- UK plans to follow similar timeline
- Policy discussion starting in the Middle East
- Frontrunner countries such as Japan and New Zealand setting comparable targets and timelines for SAF adoption as Western peers
- SAF policy discussion spreading to an increasing number of countries

1) Intentions Paper proposal to introduce a carbon intensity reduction target for jet fuel starting in 2024, with -10% CI target in 2030; 2) Canada federal Clean Fuel Standard 3) BTC (Blenders Tax Credit) expected to change to a CFPC (Clean Fuel Production Credit) in 2025; 4) Provisional agreement on ReFuelEU Aviation with 2030 level of 6% including 1.2% RFNBO sub-mandate; 5) UK Net Zero Strategy; 6) METI proposal on May 26, 2023.

ReFuelEU Aviation regulation is part of European Union's Fit for 55 package

Fit for 55: EU's target of reducing net greenhouse gas emissions by at least 55% by 2030

ReFuelEU Aviation obligates aviation fuel suppliers to supply an increasing share of sustainable aviation fuel at European Union airports; including also increasing share of synthetic fuels to decarbonise the aviation sector.

Neste's SAF availability

1.5 Mt/a

SAF capacity

Capacity in early 2024 with completed Singapore refinery expansion and ongoing investments in the Rotterdam refinery

>70

Customers

Direct customers across the aviation supply chain, i.e. fuel suppliers, airlines, corporates and travel & cargo companies

21

Countries

Neste's SAF is used in a growing list of countries across Europe, Americas, Middle East and Asia-Pacific

>25

Key airports¹

Neste MY Sustainable Aviation Fuel is available either directly from Neste or via a channel partner at key aviation hubs around the world

Neste MY Sustainable Aviation Fuel reduces GHG emissions by up to 80 % over the lifecycle compared to fossil jet fuel

NESTE

Change runs on renewables

