

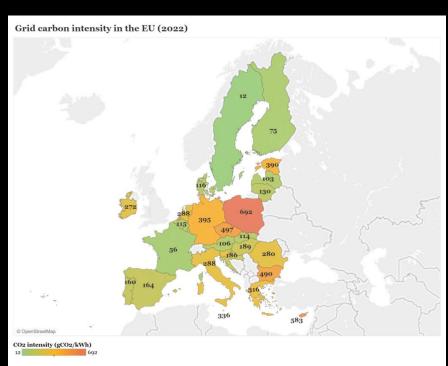
WHERE THE BIOCCS IS GOING

Esa Vakkilainen Professor, LUT university

World has always changed and humans have survived

Whether we like or not the energy transition happens

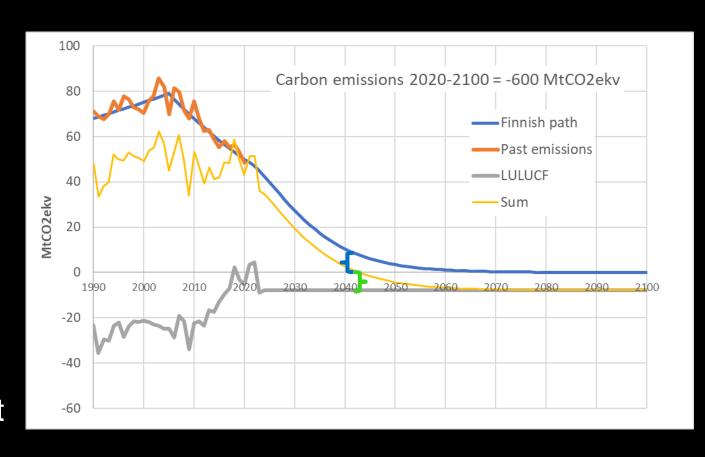
- >>> What is happening in Finland
- >> Why do we need carbon sinks
- >>> What should be done post 2040
- >>> What should be done with carbon



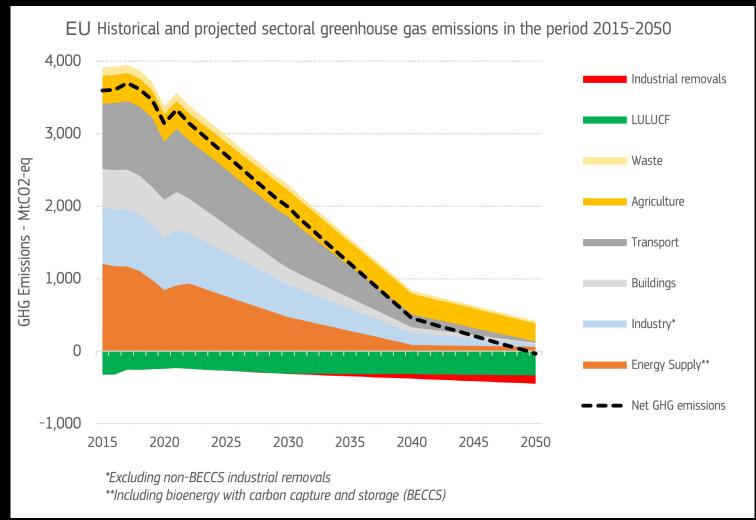
What is happening in Finland

Wind power will shortly generate a third of Finnish energy production

- >> Finnish electricity was ~33 gCO2/kWh in 2023
- Fast transfer to electric mobility
- End of coal and peat use for energy is here
- >> Finnish Industry to end fossil CO2
- Bioenergy, bioeconomy and BECCS are Finnish strengths
- >>> First P2X investments; Tampere, Harjavalta,...
- ~2000 MW electric boiler capacity

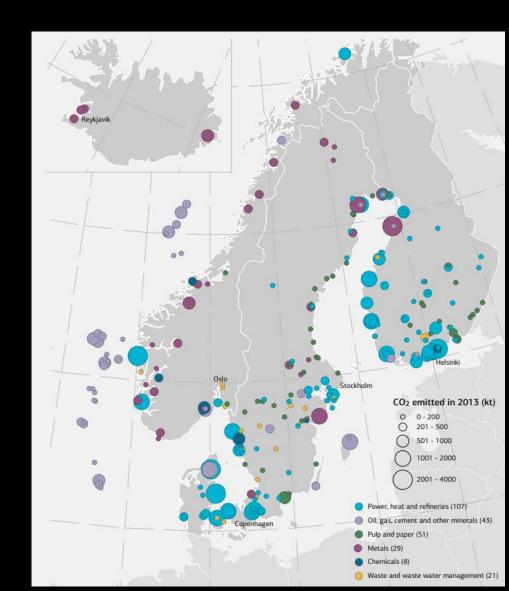


Why do we need carbon sinks


Carbon negative Finland by 2035

- National target, 2035 carbon neutrality, not yet sure
- Current trajectory ~2045 carbon neutrality without additional effort well before EU target
- LULUCF level in 2040 not yet clear due to recent changes in accounting*
- Large use of BECCS/BECCU not yet envisioned

We have chosen not to end all fossil use?



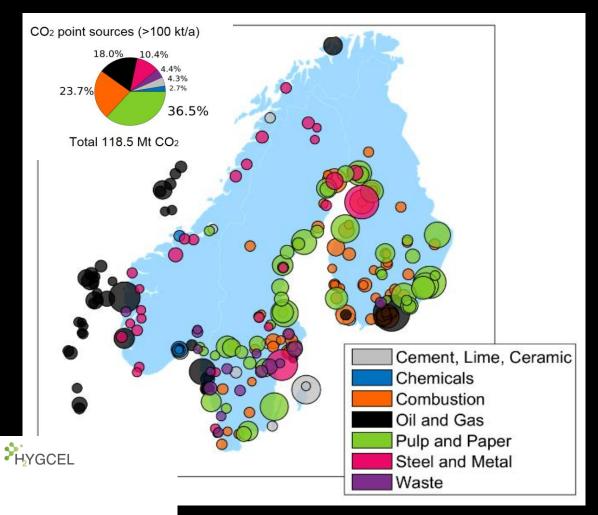
EU needs negative CO2 emissions to balance continuing fossil CO2 & agri

Nordic is poised to lead in carbon economy

- >> Large low carbon electricity
- >>> Combined with large pulp and paper sector & CHP, large point sources
- BECCS in Nordics does not require additional biomass use
- Storage possibilities in Norway
- Nordics are poised to be a powerhouse of BECCS/BECCU

How will CC do after 2040

Role of CC after 2040


- Providing e-fuels to land transport, but will "no combustion engines" kill all transport business
- Providing BECCS for required negative carbon removals, but who will pay?
- Providing carbon to chemicals and textiles, but fossil alternatives have still advantage

Where to use our carbon needs more thought

Will Nordics do BECCS, H2 or e-fuels?

- Biogenic CO2 >50 MtCO2/a
- >> If 10 MtCO2/a to methanol
 - Electricity 9000 MW
 - Production 7.5 MtMeOH
- >>> Value ~8 000 M€
- >> If 10 MtCO2/a BECCS
- >>> Value ~1 000 M€
- If just hydrogen
 - Production 1.5 MtH2
- >>> Value ~2 000 M€

Can we use CO2 to produce fibres

Textiles from CO2!

Replacing textiles from fossils

UANTWERP, FAIRBRICS, AIMPLAS, NALDEO, LUT LAPPEENRANTA, DIGIOTOUCH, TECNALIA, CIAOTECH, DITF, FAURECIA, NALDEO, SUREPURE, LTC

Where to get the carbon for EU in 2050?

- EU needs 450 MtCO2 carbon removal CCS
- >> In 2050 EU requires yearly 5000 TWh of e-fuels and e-chemicals² or ~300-1000 MtCO2
- >>> EU bioenergy use is ~1700 TWh³ corresponding to ~600 MtCO2
 - Direct use of forest biomass 263 Mm³
- EU fellings 2022 were 532 Mm³ corresponding to ~500 MtCO2 from wood
- From current operations BECCS ~300 MtCO2, where to get the rest?
- >> In addition, biomass is required for new buildings and high value end use e.g. lignin products and materials

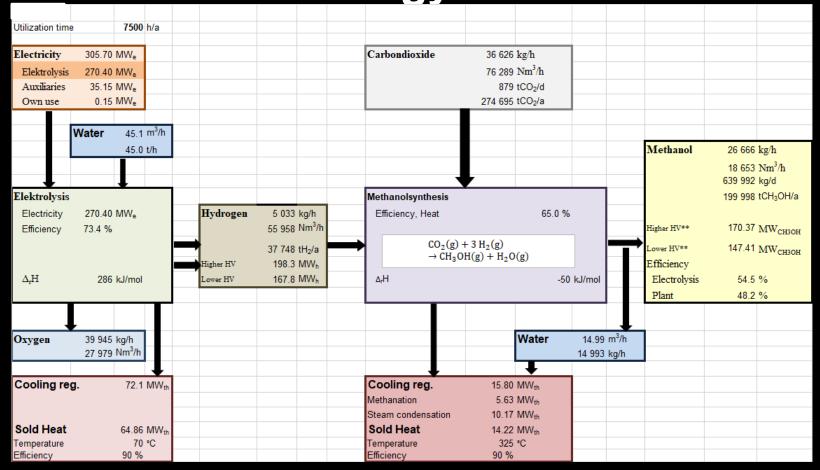
²Ram et al., 2022, Accelerating the European renewable energy transition, Brussels.

³European commission, 2021, Brussels.

Carbon negative LUT in 2024

We aim to stop climate change – not merely adapt to it.

Kiitos



Mass- and energybalance - 200 kt/a CH₃OH-plant

vild 100 units

Sisään		
- sähkö	2 293 000	MWh/a
	2 293	GWh/a
- hiilidioksidi	275 000	tCO ₂ /a
- vesi	337 000	tH ₂ O/a
Ulos		
- metanoli	200 000	tCH₃OH/a
	1 106 000	MWh/a
- lämpö H1	486 000	GWh/a
- lämpö H2	107 000	GWh/a
- happi	300 000	tO ₂ /a
Investointi	339	M€

