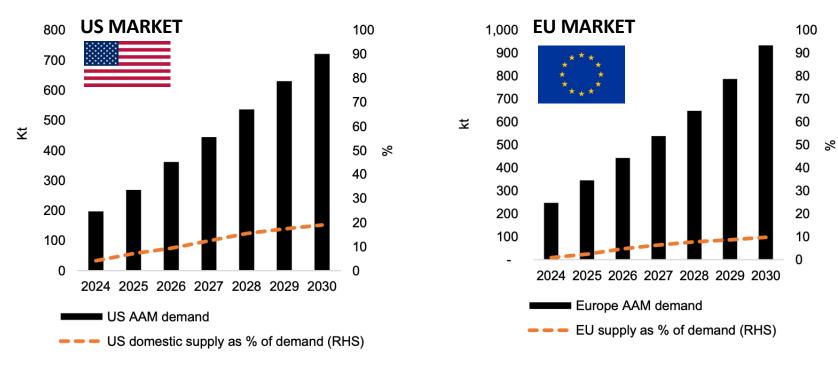
Turning CO₂ into Critical Materials:


Local, Green Carbon for Tomorrow's Supply Chains

Dr. Apostolos Segkos, Head of Development

UPCATALYST.COM

Global Problem

Every EV requires Graphite – local demand vs local supply

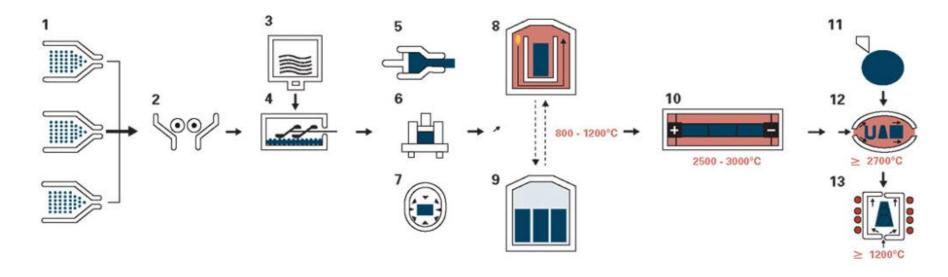
Source: Benchmark Minerals

TOTAL DEMAND OF DOMESTIC MARKETS ONLY MET BY 10-20% OF DOMESTIC SUPPLY

CHALLENGE #1: SUPPLY CHAIN SECURITY

The EU does not produce graphite

The EU, the US, Japan and Korea have declared graphite as a critical raw material.


China curbed graphite exports from 1st of December 2023.

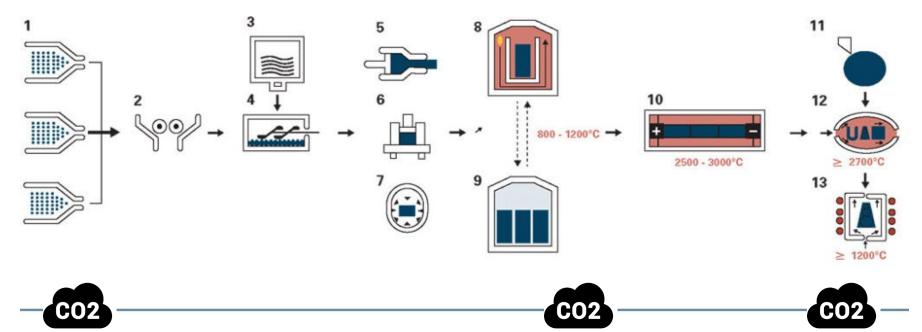
77% of the global graphite need comes from China.

CHALLENGE #2: CARBON EMISSIONS

Synthetic Graphite

- 1 Coke, graphite
- 2 Grinding
- 3 Coal tar pitch

- 4 Mixing
- 5 Extruding
- 6 Vibro molding


- 7 Isostatic pressing
- 8 Carbonizing
- 9 Pitch impregnation

- 10 Graphitizing
- 11 Machining
- 12 Purifying
- 13 SiC coating

source: SGL Carbon GmbH

CHALLENGE #2: CARBON EMISSIONS

Synthetic Graphite

1 Coke, graphite

2 Grinding

3 Coal tar pitch

4 Mixing

5 Extruding

6 Vibro molding

7 Isostatic pressing

8 Carbonizing

9 Pitch impregnation

10 Graphitizing

11 Machining

12 Purifying

13 SiC coating

source: SGL Carbon GmbH

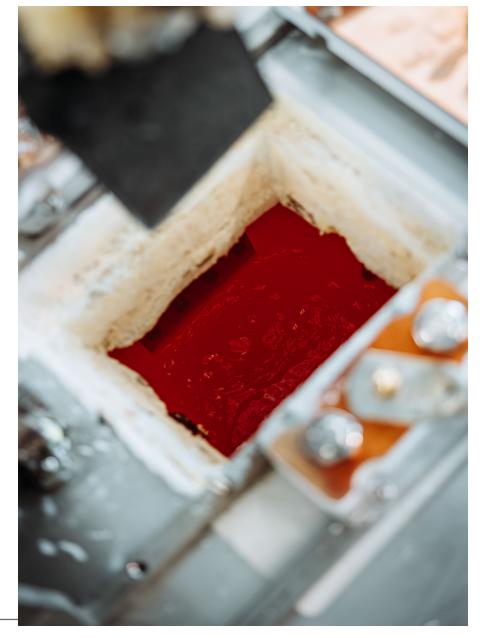
CHALLENGE #2: CARBON EMISSIONS

Conventional Graphite and Nanotube production methods emit large amounts of CO₂

GRAPHITE

million tons of annual CO₂ emissions by 2030

MWCNTs

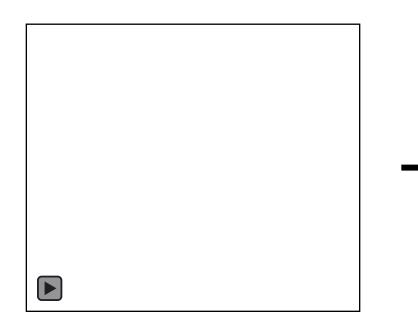

UP Catalyst: Turning CO₂ into Critical Materials

Split CO₂ molecule into oxygen and carbon

$$CO_2 \longrightarrow C + O_2$$

At the lowest temperatures

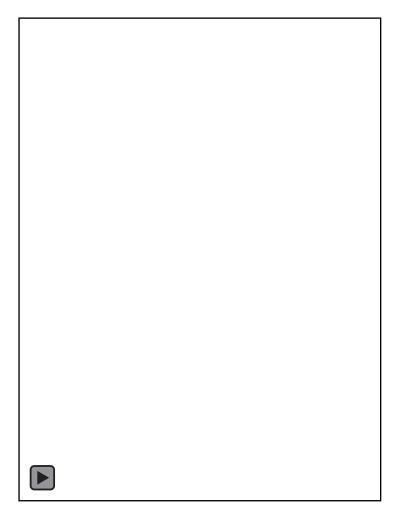
Low Energy — Lowest Cost



Local, Green Carbon for Tomorrow's Supply Chains

Renewable electricity

CO₂ emission from hard-toabate industries


Sustainable Graphite

Sustainable MWCNTs

SCALABLE TECHNOLOGY

Known technology and already applied in

- Aluminium
- Magnesium

Scalable reactor design

SCALABLE TECHNOLOGY

Molten salt electrolysis: Known and already applied in

- Aluminium
- Magnesium

Deployable Pilot Reactor

OUR IMPACT: Localized supply chain of sustainable raw materials

GRAPHITE		CO ₂ EMISSIONS PER TON OF MATERIAL	FEEDSTOCK	
	Benchmark, synthetic	20 tons Fossil		
MWCNTs		0.07 ton	CO ₂	
	Benchmark, CVD method	170 tons	Fossil	
		0.7 ton	CO ₂	

Emission Avoidance

Emission avoidance through CO₂ utilisation

Tons of CO₂ per ton of material produced

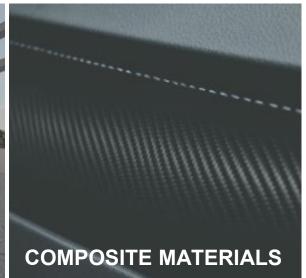
Synthetic Graphite 25-50 t

Natural Graphite
10-15 t*

Graphite 0.07 t**


*Carrère, et. al, (2024). https://doi.org/10.1016/j.est.2024.112356

**LCA validated by Research Institutes of Sweden (RISE) and Bureau Veritas (2024)


OUTLOOK: MARKET OPPORTUNITY

Market opportunity is larger than for battery applications alone

Leading the world to renewable carbon